Principal Investigators

Gregory J. Czarnota, PhD, MD

Ph.D., MD, FRCPC, Scientist
Sunnybrook Health Sciences Centre
2075 Bayview Avenue, Room T2 167 Toronto,


B.Sc., 1991, Biochemistry, McMaster University, Canada
PhD, 1995, Medical Biophysics, University of Toronto, Canada
MD, 2000, Doctor of Medicine, University of Toronto, Canada

Appointments and Affiliations:

Senior scientist, Physical Sciences, Odette Cancer Research Program (director), Sunnybrook Research Institute
Radiation oncologist, Sunnybrook Health Sciences Centre
Associate professor, departments of radiation oncology and medical biophysics, University of Toronto

Research Focus:

Ultrasound imaging
Spectroscopy of cancer therapy responses

Research Summary:

Dr. Czarnota is conducting research focused on using ultrasound imaging and spectroscopy at conventional and high frequencies to detect apoptosis and other forms of cell death in response to chemotherapy and radiation therapy. In addition to being a scientist in the imaging discipline he is an MD in the department of radiation oncology with applied research in breast cancer patients. His basic science research interests include studies in biochemistry, chromatin biology, biophysics, medicine and oncology.

Dr. Czarnota, along with his collaborator Dr. Michael Kolios, discovered that ultrasound could be used to detect apoptosis. This finding has since been applied to important questions in oncology and organ transplantation. Our research group has demonstrated that this special form of cell death may be detected using ultrasound imaging and spectroscopy in vitro, in situ, and in vivo. The use of ultrasound to detect apoptosis and other forms of cell death has numerous applications listed below.

Cell and molecular biology:

Despite the use of medical ultrasound for decades, the features inside cells that contribute to ultrasound backscatter at conventional and high frequencies remain unknown. We are systematically probing how subcellular constituents such as DNA, RNA, protein and lipids contribute to backscatter. In particular we are interested in how nuclear and chromatin structure affects ultrasound signals since we have found it to be a dominant structure in the formation of backscatter signals.

Image and spectroscopic analysis:

We are collaboratively investigating a number of spectroscopic parameters for characterizing tumours and tumour responses to chemotherapy and radiation therapy at conventional and high frequencies. We are developing these methods to generate colour-coded ultrasound parameteric maps to aid in assessing tumour responses to therapy. Since these spectroscopic signals are potentially linked to nuclear structure and chromatin structure which differs between normal and neoplastic tissue there is potential to develop our spectroscopic methods not only into a method to track tumour responses but a potentially important diagnostic tool.

Clinical evaluations of ultrasound imaging and spectroscopy:

We are instituting a number of clinical evaluations of our spectroscopic detection of cell death. Our main investigational site is breast cancer patients with large “locally advanced” breast cancers who receive neoadjuvant combined chemotherapy and radiation therapy. We hope to rapidly distinguish responding tumours from those that are non-responding so that the latter may be treated with different chemotherapy regimens or with radiation sensitizers to hopefully improve outcomes.




  1. Klein J, Lam WW, Czarnota, GJ and Stanisz GJ. Chemical exchange saturation transfer MRI to assess cell data in breast cancer xenografts at 7T. Oncotarget. 2018 9(59): 31490-31501.
  2. Gangeh MJ, Liu S, Tadayyon H, Czarnota GJ. Computer-Aided Theragnosis Based on Tumor Volumetric Information in Breast Cancer. IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Aug;65(8):1359-1369.
  3. O’Reilly MA, Chinnery T, Yee ML, Wu SK, Hynynen K, Kerbel RS, Czarnota GJ, Pritchard KI, Sahgal A. Preliminary Investigation of Focused Ultrasound-Facilitated Drug Delivery for the Treatment of Leptomeningeal Metastases. Sci Rep. 2018 Jun 13;8(1):9013
  4. El Kaffas A, Al-Mahrouki A, Hashim A, Law N, Giles A, Czarnota GJ. Role of Acid Sphingomyelinase and Ceramide in Mechano-Acoustic Enhancement of Tumor Radiation Responses. J Natl Cancer Inst. 2018. 110(9).
  5. Sannachi L, Gangeh M, Tadayyon H, Sadeghi-Naini A, Sonal Gandhi S, Wright FC, Slodkowska E, Curpen B, Tran WT, Czarnota GJ. Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using quantitative ultrasound, texture, and molecular features.PLoS One. 2018. 13(1): e0189634.
  6. El Kaffas A, Gangeh MJ, Farhat G, Tran WT, Hashim A, Giles A, Czarnota GJ. Tumour Vascular Shutdown and Cell Death Following Ultrasound-Microbubble Enhanced Radiation Therapy. Theranostics. 2018 Jan 1;8(2):314-327


  1. Al-Mahrouki A, Giles A, Hashim A, Kim HC, El-Falou A, Rowe-Magnus D, et al. (2017) Microbubble-based enhancement of radiation effect: Role of cell membrane ceramide metabolism. PLoS ONE 12(7): e0181951.
  2. Wirtzfeld L, Berndl ESL, Czarnota GJ, Kolios MC. Monitoring Quantitative Ultrasound Parameter Changes in a Cell Pellet Model of Cell Starvation. Biophys J. 2017.
  3. Tran WT, Gangeh MJ, Sannachi L, Chin L, Watkins E, Bruni SG, Rastegar RF, Curpen B, Trudeau M, Gandhi S, Yaffe M, Slodkowska E, Childs C, Sadeghi-Naini A, Czarnota GJ. Predicting breast cancer response to neoadjuvant chemotherapy using pretreatment diffuse optical spectroscopic texture analysis
  4. Tadayyon H, Sannachi L, Gangeh MJ, Kim C, Ghandi S, Trudeau M, Pritchard K, Tran WT, Slodkowska E, Sadeghi-Naini A, Czarnota GJ. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound. Sci Rep. 2017;7:45733.
  5. Pasternak M, Doss L, Farhat G, Al-Mahrouki A, Kim CH, Kolios M, Tran WT, Czarnota GJ. Effect of chromatin structure on quantitative ultrasound parameters. Oncotarget. 2017;8(12):19631-19644.
  6. Mehrabian H, Desmond KL, Chavez S, Bailey C, Rola R, Sahgal A, Czarnota GJ, Soliman H, Martel AL, Stanisz GJ. Water Exchange Rate Constant as a Biomarker of Treatment Efficacy in Patients with Brain Metastases Undergoing Stereotactic Radiosurgery. Int J Radiat Oncol Biol Phys. 2017 Jan 10. pii: S0360-3016(17)30020-2. doi: 10.1016/j.ijrobp.2017.01.016.
  7. Bushehri A, Czarnota GJ, Zhang L, Hynynen K, Huang Y, Chan M, Chu W, Dennis K, Mougenot C, Coccagna J, Sahgal A, Chow E, DeAngelis C. Urinary cytokines/chemokines after magnetic resonance-guided high intensity focused ultrasound for palliative treatment of painful bone metastases. Ann Palliat Med. 2017 Jan;6(1):36-54


  1. Chan M, Dennis K, Huang Y, Mougenot C, Chow E, DeAngelis C, Coccagna J, Sahgal A, Hynynen K, Czarnota GJ, Chu W. Magnetic resonance-guided high intensity focused ultrasound for palliation of painful skeletal metastases – A pilot study. Technol Cancer Res Treat. 2016 Aug 1. pii: 1533034616658576
  2. Gangeh MJ, Hashim A, Giles A, Sannachi L, Czarnota GJ. Computer Aided Prognosis for Cell Death Categorization and Prediction In vivo Using Quantitative Ultrasound and Machine Learning Techniques. [Epub ahead of print]. Medical Physics, vol. 43, no. 12, Dec. 2016
  3. Pasternak MM, Sadeghi-Naini A, Ranieri SM, Giles A, Oelze ML, Kolios MC, Czarnota GJ. High-frequency ultrasound detection of cell death: Spectral differentiation of different forms of cell death in vitro. Oncoscience. [Epub ahead of print]. DOI: 10.18632/oncoscience.319
  4. Tran WT, Childs C, Chin L, Slodkowska E, Sannachi L, Tadayyon H, Watkins E, Wong SL, Curpen B, El Kaffas A, Al-Mahrouki A, Sadeghi-Naini A, Czarnota GJ. Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy. Oncotarget. 2016 Apr 12;7(15):19762-80 DOI: 10.18632/oncotarget.7844. PubMed PMID: 26942698. PubMed Central PMCID: PMC4991417
  5. Lai P, Tarapacki C, Tran WT, El Kaffas A, Lee J, Hupple C, Iradji S, Giles A, Al-Mahrouki A, Czarnota GJ. Breast tumor response to ultrasound mediated excitation of microbubbles and radiation therapy in vivo. Oncoscience. 2016 Mar 24;3(3-4):98-108. DOI: 10.18632/oncoscience.299. PubMed PMID: 27226983. PubMed Central PMCID: PMC4872648.
  6. Tadayyon H, Sannachi L, Gangeh M, Sadeghi-Naini A, Tran W, Trudeau ME, Pritchard K, Ghandi S, Verma S, Czarnota GJ. Quantitative ultrasound assessment of breast tumor response to chemotherapy using a multi-parameter approach. Oncotarget. 2016 Apr 20. DOI: 10.18632/oncotarget.8862. PubMed PMID: 27105515.
  7. Gangeh MJ, Tadayyon H, Sannachi L, Sadeghi-Naini A, Tran WT, Czarnota GJ. Computer Aided Theragnosis Using Quantitative Ultrasound Spectroscopy and Maximum Mean Discrepancy in Locally Advanced Breast Cancer. IEEE Trans Med Imaging. 2016 Mar;35(3):778-90. DOI: 10.1109/TMI.2015.2495246. PubMed PMID: 26529750.


  1. Pasternak MM, Strohm EM, Berndl ES, Kolios MC. Properties of cells through life and death – an acoustic microscopy investigation. Cell Cycle.2015;14(18):2891-8. DOI: 10.1080/15384101.2015.1069925. PubMed PMID: 26178635 PubMed Central PMCID: PMC4825614.
  2. Klein J, Czarnota G, Lam W, Tarapacki C, Stanisz G. In Vivo Measurements of CEST Magnetic Resonance Imaging Signal in Breast Cancer Xenografts at 7T. Int JRadiat Oncol Biol Phys. 2016 Oct 1;96(2S):E648. DOI:10.1016/j.ijrobp.2016.06.2251. PubMed PMID: 27675257.
  3. Tadayyon H, Sannachi L, Sadeghi-Naini A, Al-Mahrouki A, Tran WT, Kolios MC, Czarnota GJ. Quantification of Ultrasonic Scattering Properties of In Vivo Tumor Cell Death in Mouse Models of Breast Cancer. Transl Oncol. 2015 Dec;8(6):463-73. DOI: 10.1016/j.tranon.2015.11.001. PubMed PMID: 26692527; PubMed Central PMCID: PMC4701005.
  4. Sadeghi-Naini A, Zhou S, Gangeh MJ, Jahedmotlagh Z, Falou O, Ranieri S, Azrif M, Giles A, Czarnota GJ. Quantitative evaluation of cell death response in vitro and in vivo using conventional-frequency ultrasound. Oncoscience. 2015 Sep 3;2(8):716-26. PubMed PMID: 26425663; PubMed Central PMCID: PMC4580065.
  5. Sannachi L, Tadayyon H, Sadeghi-Naini A, Tran W, Gandhi S, Wright F, Oelze M, Czarnota G. Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters. Med Image Anal. 2015 Feb;20(1):224-36. DOI: 10.1016/ PubMed PMID: 25534283.
  6. Sadeghi-Naini A, Vorauer E, Chin L, Falou O, Tran WT, Wright FC, Gandhi S, Yaffe MJ, Czarnota GJ. Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images. Med Phys. 2015 Nov;42(11):6130-46. DOI: 10.1118/1.4931603. PubMed PMID: 26520706.
  7. Al-Mahrouki AA, Wong E, Czarnota GJ. Ultrasound-stimulated microbubble enhancement of radiation treatments: endothelial cell function and mechanism. Oncoscience. 2015 Dec 15;2(12):944-57. PubMed PMID: 26909363. PubMed Central PMCID: PMC4741402.


  1. Tadayyon H, Sadeghi-Naini A, Czarnota GJ. Noninvasive characterization of locally advanced breast cancer using textural analysis of quantitative ultrasound parametric images. Transl Oncol. 2014 Dec;7(6):759-67. DOI: 10.1016/j.tranon.2014.10.007. PubMed PMID: 25500086 PubMed Central PMCID: PMC4311023
  2. Sadeghi-Naini A, Sannachi L, Pritchard K, Trudeau M, Gandhi S, Wright FC, Zubovits J, Yaffe MJ, Kolios MC, Czarnota GJ. Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture. Oncotarget. 2014 Jun 15;5(11):3497-511. PubMed PMID: 24939867 PubMed Central PMCID: PMC4116498.
  3. Tadayyon H, Sadeghi-Naini A, Wirtzfeld L, Wright FC, Czarnota G. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties. Med Phys. 2014 Jan;41(1):012903. DOI: 10.1118/1.4852875. PubMed PMID: 24387530.
  4. Kim HC, Al-Mahrouki A, Gorjizadeh A, Sadeghi-Naini A, Karshafian R, Czarnota GJ. Quantitative ultrasound characterization of tumor cell death: ultrasound-stimulated microbubbles for radiation enhancement. PLoS One. 2014 Jul 22;9(7):e102343. DOI: 10.1371/journal.pone.0102343. PubMed PMID: 25051356. PubMed Central PMCID: PMC4106764.
  5. El Kaffas A, Nofiele J, Giles A, Cho S, Liu SK, Czarnota GJ. Dll4-notch signalling blockade synergizes combined ultrasound-stimulated microbubble and radiation therapy in human colon cancer xenografts. PLoS One. 2014 Apr 15;9(4):e93888. DOI: 10.1371/journal.pone.0093888. PubMed PMID: 24736631. PubMed Central PMCID: PMC3988033.
  6. Al-Mahrouki AA, Iradji S, Tran WT, Czarnota GJ. Cellular characterization of ultrasound stimulated microbubble radiation enhancement in a prostate cancer xenograft model. Dis Model Mech. 2014 Mar;7(3):363-72. DOI: 10.1242/dmm.012922. PubMed PMID: 24487407. PubMed Central PMCID: PMC3944496.
  7. El Kaffas A, Al-Mahrouki A, Tran WT, Giles A, Czarnota GJ. Sunitinib effects on the radiation response of endothelial and breast tumor cells. Microvasc Res. 2014 Mar; 92:1-9. DOI: 10.1016/j.mvr.2013.10.008. PubMed PMID: 24215790.
  8. Briggs K, Al Mahrouki A, Nofiele J, El-Falou A, Stanisz M, Kim HC, Kolios MC, Czarnota GJ. Non-invasive monitoring of ultrasound-stimulated microbubble radiation enhancement using photoacoustic imaging. Technol Cancer Res Treat. 2014 Oct;13(5):435-44. DOI: 10.7785/tcrtexpress.2013.600266. PubMed PMID: 24000993. PubMed Central PMCID: PMC4527466.
  9. Gangeh MJ, Sadeghi-Naini A, Diu M, Tadayyon H, Kamel MS, Czarnota GJ. Categorizing extent of tumor cell death response to cancer therapy using quantitative ultrasound spectroscopy and maximum mean discrepancy. IEEE Trans Med Imaging. 2014 Jun;33(6):1390-400. DOI: 10.1109/TMI.2014.2312254. PubMed PMID: 24893261.
  10. Nofiele JT, Czarnota GJ, Cheng HL. Noninvasive manganese-enhanced magnetic resonance imaging for early detection of breast cancer metastatic potential. Mol Imaging. 2014;13. DOI: 10.2310/7290.2013.00071. PubMed PMID: 24622809.
  11. Wirtzfeld LA, Berndl ES, Czarnota GJ and Kolios MC. Effective scatterer size estimates in HT- 29 spheroids at 55 MHz and 80 MHz. IEEE International Ultrasonics Symposium Proceedings. 2014 pp. 632-635.
  12. Wirtzfeld LA, Berndl ES, Czarnota GJ and Kolios MC. Quantitative ultrasound analyses of cell starvation in HT-29 pellets. IEEE International Ultrasonics Symposium Proceedings. 2014 pp. 620-623


  1. Kwok SJ, El Kaffas A, Lai P, Al-Mahrouki AA, Lee J, Iradji S, Tran WT, Giles A, Czarnota GJ. Ultrasound-mediated microbubble enhancement of radiation therapy studied using threedimensional high-frequency power Doppler ultrasound. Ultrasound Med Biol. 2013 Nov;39(11):1983-90. DOI:10.1016/j.ultrasmedbio.2013.03.025. PubMed PMID: 23993051.
  2. Sadeghi-Naini A, Papanicolau N, Falou O, Tadayyon H, Lee J, Zubovits J, Sadeghian A, Karshafian R, Al-Mahrouki A, Giles A, Kolios MC, Czarnota GJ. Low-frequency quantitative ultrasound imaging of cell death in vivo. Med Phys. 2013 Aug;40(8):082901. DOI: 10.1118/1.4812683. PubMed PMID: 23927356.
  3. Kim HC, Al-Mahrouki A, Gorjizadeh A, Karshafian R, Czarnota GJ. Effects of biophysical parameters in enhancing radiation responses of prostate tumors with ultrasound-stimulated microbubbles. Ultrasound Med Biol. 2013 Aug;39(8):1376-87. DOI: 10.1016/j.ultrasmedbio.2013.01.012. PubMed PMID: 23643061.
  4. Sadeghi-Naini A, Papanicolau N, Falou O, Zubovits J, Dent R, Verma S, Trudeau M, Boileau JF, Spayne J, Iradji S, Sofroni E, Lee J, Lemon-Wong S, Yaffe M, Kolios MC, Czarnota GJ. Quantitative ultrasound evaluation of tumor cell death response in locally advanced breast cancer patients receiving chemotherapy. Clin Cancer Res. 2013 Apr 15;19(8):2163-74. DOI: 10.1158/1078-0432.CCR-12-2965. PubMed PMID: 23426278.
  5. Falou O, Sadeghi-Naini A, Prematilake S, Sofroni E, Papanicolau N, Iradji S, Jahedmotlagh Z, Lemon-Wong S, Pignol JP, Rakovitch E, Zubovits J, Spayne J, Dent R, Trudeau M, Boileau JF, Wright FC, Yaffe MJ, Czarnota GJ. Evaluation of neoadjuvant chemotherapy response in women with locally advanced breast cancer using ultrasound elastography. Transl Oncol. 2013 Feb;6(1):17-24. PubMed PMID: 23418613. PubMed Central PMCID: PMC3573650.
  6. El Kaffas A, Giles A, Czarnota GJ. Dose-dependent response of tumor vasculature to radiation therapy in combination with Sunitinib depicted by three-dimensional high-frequency power Doppler ultrasound. Angiogenesis. 2013 Apr;16(2):443-54. DOI: 10.1007/s10456-012-9329-2. PubMed PMID: 23314761.
  7. Pourebrahimi B, Al-Mahrouki AA, Zalev J, Nofiele JT, Czarnota GJ and Kolios MC. Classifying Normal and Abnormal Vascular Tissues using Photoacoustic Signals. Proc. of SPIE Vol. 8581, 858141
  8. Bailey C, Desmond KL, Czarnota GJ, Stanisz GJ. Quantitative magnetization transfer studies of apoptotic cell death. Magn Reson Med. 2011 Jul;66(1):264-9. DOI: 10.1002/mrm.22820. PubMed PMID: 21695728.
  9. Sadeghi-Naini A, Falou O, Tadayyon H, Al-Mahrouki A, Tran W, Papanicolau N, Kolios MC, Czarnota GJ. Conventional frequency ultrasonic biomarkers of cancertreatment response in vivo. Transl Oncol. 2013 Jun 1;6(3):234-43. Print 2013 Jun. PubMed PMID: 23761215; PubMed Central PMCID: PMC3678128.


  1. Al-Mahrouki AA, Karshafian R, Giles A, Czarnota GJ. Bioeffects of ultrasound-stimulated microbubbles on endothelial cells: gene expression changes associated with radiation enhancement in vitro. Ultrasound Med Biol. 2012 Nov;38(11):1958-69. DOI: 10.1016/j.ultrasmedbio.2012.07.009. PubMed PMID: 22980406.
  2. Falou O, Soliman H, Sadeghi-Naini A, Iradji S, Lemon-Wong S, Zubovits J, Spayne J, Dent R, Trudeau M, Boileau JF, Wright FC, Yaffe MJ, Czarnota GJ. Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy. Transl Oncol. 2012 Aug;5(4):238-46. PubMed PMID: 22937175. PubMed Central PMCID: PMC3431033.
  3. Czarnota GJ, Karshafian R, Burns PN, Wong S, Al-Mahrouki A, Lee JW, Caissie A, Tran W, Kim C, Furukawa M, Wong E, Giles A. Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc Natl Acad Sci USA. 2012 Jul 24;109(30):E2033-41. DOI: 10.1073/pnas.1200053109. PubMed PMID: 22778441. PubMed Central PMCID: PMC3409730.
  4. Lee J, Karshafian R, Papanicolau N, Giles A, Kolios MC, Czarnota GJ. Quantitative ultrasound for the monitoring of novel microbubble and ultrasound radiosensitization. Ultrasound Med Biol. 2012 Jul;38(7):1212-21. DOI: 10.1016/j.ultrasmedbio.2012.01.028. PubMed PMID: 22579547.
  5. El Kaffas A, Tran W, Czarnota GJ. Vascular strategies for enhancing tumor response to radiation therapy. Technol Cancer Res Treat. 2012 Oct;11(5):421-32. PubMed PMID: 22568629.
  6. Falou O, Sadeghi-Naini A, Soliman H, Yaffe MJ, Czarnota GJ. Diffuse optical imaging for monitoring treatment response in breast cancer patients. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3155-8. doi: 10.1109/EMBC.2012.6346634. PubMed PMID: 23366595.
  7. Sadeghi-Naini A, Falou O, Czarnota GJ. Quantitative ultrasound spectral parametric maps: early surrogates of cancer treatment response. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2672-5. doi: 10.1109/EMBC.2012.6346514. PubMed PMID:23366475.
  8. Sadeghi-Naini A, Falou O, Czarnota GJ. Quantitative ultrasound visualization of cell death: emerging clinical applications for detection of cancer treatment response. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1125-8. doi:10.1109/EMBC.2012.6346133. Review. PubMed PMID: 23366094.
  9. Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR; Bioeffects Committee of the American Institute of Ultrasound in Medicine. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med. 2012 Apr;31(4):623-34. Review. PubMed PMID: 22441920.


  1. Farhat G, Mariampillai A, Yang VX, Czarnota GJ, Kolios MC. Detecting apoptosis using dynamic light scattering with optical coherence tomography. J Biomed Opt. 2011 Jul;16(7):070505. DOI: 10.1117/1.3600770. PubMed PMID: 21806246.
  2. Vlad RM, Kolios MC, Moseley JL, Czarnota GJ, Brock KK. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathology. Med Phys. 2010 Aug;37(8):4288-97. PubMed PMID: 20879589.
  3. Vlad RM, Saha RK, Alajez NM, Ranieri S, Czarnota GJ, Kolios MC. An increase in cellular size variance contributes to the increase in ultrasound backscatter during cell death. Ultrasound Med Biol. 2010 Sep;36(9):1546-58. DOI: 10.1016/j.ultrasmedbio.2010.05.025. PubMed PMID: 20800181.
  4. Park JI, Jagadeesan D, Williams R, Oakden W, Chung S, Stanisz GJ, Kumacheva E. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities. ACS Nano. 2010 Nov 23;4(11):6579-86. doi: 10.1021/nn102248g. Epub 2010 Oct 18. PubMed PMID: 20968309.
  5. Ultrasound detection of cell death G. J. Czarnota and M. C. Kolios, Imaging in Medicine, vol. 2, no. 1, pp. 17–28, Feb. 2010.
  6. Quantitative Measurements of Apoptotic Cell Properties Using Acoustic Microscopy   Eric M. Strohm, Gregory J. Czarnota, and Michael C. Kolios (2010), IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 10
  7. An increase in cellular size variance contributes to the increase in ultrasound backscatter during cell death    Roxana M. Vlad, Ratan K Saha, Nehad M. Alajez, Shawn Ranieri, Gregory J. Czarnota and Michael C. Kolios (2010), Ultrasound in Medicine and Biology 36 (9) 1546-1558
  8. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathologyRoxana M. Vlad, Michael C. Kolios, Joanne L. Moseley, Gregory J. Czarnota, Kristy K. Brock (2010)Medical Physics 37 (8) 4288-4297
  9. Ultrasound detection of cell deathGregory J. Czarnota and Michael C. Kolios (2010) Imaging in Medicine 2(1) 17-28
  10. Bailey C, Giles A, Czarnota GJ, Stanisz GJ. Detection of apoptotic cell death in vitro in the presence of Gd-DTPA-BMA. Magn Reson Med. 2009 Jul;62(1):46-55. doi: 10.1002/mrm.21972. PubMed PMID: 19253383.
  11. Dinniwell R, Chan P, Czarnota G, Haider MA, Jhaveri K, Jewett M, Fyles A, Jaffray D, Milosevic M. Pelvic lymph node topography for radiotherapy treatment planning from ferumoxtran-10 contrast-enhanced magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2009 Jul 1;74(3):844-51. doi:10.1016/j.ijrobp.2008.09.026. Epub 2008 Dec 25. PubMed PMID: 19095369.
  12. Strohm EM, Kolios MC. Measuring the mechanical properties of cells using acoustic microscopy. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6042-5. doi:10.1109/IEMBS.2009.5334535. PubMed PMID: 19964888.
  13. Bost W, Stracke F, Weiss EC, Narasimhan S, Kolios MC, Lemor R. High frequency optoacoustic microscopy. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5883-6. doi:10.1109/IEMBS.2009.5334452. PubMed PMID: 19964880.
  14. Smith SA, Golay X, Fatemi A, Mahmood A, Raymond GV, Moser HW, van Zijl PC, Stanisz GJ. Quantitative magnetization transfer characteristics of the human cervical spinal cord in vivo: application to adrenomyeloneuropathy. Magn Reson Med. 2009 Jan;61(1):22-7. doi: 10.1002/mrm.21827. PubMed PMID: 19097204; PubMed Central PMCID: PMC2632947.
  15. Banihashemi B, Vlad R, Debeljevic B, Giles A, Kolios MC, Czarnota GJ. Ultrasound imaging of apoptosis in tumor response: novel preclinical monitoring of photodynamic therapy effects. Cancer Res. 2008 Oct 15;68(20):8590-6. doi:10.1158/0008-5472.CAN-08-0006. PubMed PMID: 18922935.
  16. Yu WR, Baptiste DC, Liu T, Odrobina E, Stanisz GJ, Fehlings MG. Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol Dis. 2009 Feb;33(2):149-63. doi: 10.1016/j.nbd.2008.09.024. Epub 2008 Oct 18. PubMed PMID: 19006686.
  17. Buckley DL, Kershaw LE, Stanisz GJ. Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: dynamic contrast-enhanced MRI of human internal obturator muscle. Magn Reson Med. 2008 Nov;60(5):1011-9. doi: 10.1002/mrm.21748. PubMed PMID: 18956419.
  18. Portnoy S, Stanisz GJ. Modeling pulsed magnetization transfer. Magn Reson Med. 2007 Jul;58(1):144-55. PubMed PMID: 17659607.
  19. An Investigation of the Use of Transmission Ultrasound to Measure Acoustic Attenuation Changes in Thermal Therapy Parmar N. and Kolios M.C. (2006) Medical and Biological Engineering and Computing 44:583-591
  20. Taggart LR, Baddour RE, Giles A, Czarnota GJ, Kolios MC. Ultrasonic characterization of whole cells and isolated nuclei. Ultrasound Med Biol. 2007 Mar;33(3):389-401. PubMed PMID: 17257739.
  21. Monitoring Structural Changes in Cells with High Frequency Ultrasound Signal Statistics   A.S. Tunis G.J. Czarnota, A. Giles, M.D. Sherar, J.W. Hunt and M.C. Kolios (2005) , Ultrasound in Medicine and Biology 31(8), 1041-10
  22. High-frequency ultrasound scattering from microspheres and single cells  R. E. Baddour, M. D. Sherar, J. W. Hunt, G. J. Czarnota, M. C. Kolios (2005), Journal of  the Acoustical Society of  America, 117(2), 934-943
  23. High-frequency ultrasound for monitoring changes in liver tissue during preservation  Roxana M. Vlad, Gregory J. Czarnota, Anoja Giles, Michael D. Sherar, John W. Hunt, Michael C. Kolios (2005), Physics in Medicine and Biology, 50(2) 197-213
  24. Role of ultrasound in the detection of apoptosis G. J. Czarnota, European journal of nuclear medicine and molecular imaging, vol. 32, no. 5, p. 622, May 2005.
  25. Ultrasonic spectral parameter imaging of apoptosis   Kolios M.C., Czarnota G.J., Lee M. , Hunt J.W. and Sherar M.D. (2002)Ultrasound in Medicine and Biology 28(5), 589-597
  26. A model based upon pseudo-regular spacing of cells combined with the randomization of nuclei can explain the significant changes in high-frequency ultrasound during apoptosis Hunt J.W., Worthington A., Xuan A., Kolios M.C., Czarnota G.J. and Sherar M.D. (2002) Ultrasound in Medicine and Biology 28(2), 217-226
  27. Ultrasound imaging of apoptosis: high-resolution non-invasive imaging of programmed cell death in vitro, in situ and in vivo Czarnota G.J., Kolios M.C., Abraham J., Portnoy M., Ottensmeyer F.P., Hunt, J.W. and Sherar M.D.British journal of cancer, vol. 81, no. 3, pp. 520–527, (1999)
  28. Ultrasonic biomicroscopy of viable, dead and apoptotic cells Czarnota G.J.* , Kolios M.C.* , Vaziri H.* , Benchimol S., Ottensmeyer F.P., Sherar M.D. and Hunt J.W. (1997) Ultrasound in Medicine and Biology 23(6), 961-965 * authors have made equal contribution
  29. Three-dimensional Structure of Myelin Basic Protein D. R. Beniac, M. D. Luckevich, G. J. Czarnota, T. A. Tompkins, R. A. Ridsdale, F. P. Ottensmeyer, M. A. Moscarello, and G. Harauz, vol. 272, no. 7, pp. 4261–4268, 1997.
  30. High Resolution Microanalysis and Three-Dimensional Nucleosome Structure Associated with Transcribing Chromatin G. J. Czarnota, D. P. Bazett-Jones, E. Mendez, V. G. Allfrey, and F. P. Ottensmeyer, Micron, vol. 28, no. 419–431, p. 1997, 1997.
  31. Structural states of the nucleosome G. J. Czarnota and F. P. Ottensmeyer, The Journal of biological chemistry, vol. 271, no. 7, pp. 3677–83, Feb. 1996.
  32. Visualization and analysis of unfolded nucleosomes associated with transcribing chromatin D. P. Bazett-Jones, E. Mendez, G. J. Czarnota, F. P. Ottensmeyer, and V. G. Allfrey, Nucleic acids research, vol. 24, no. 2, pp. 321–9, Jan. 1996.
  33. A Structure for the Signal Sequence Binding Protein SRP54: 3D Reconstruction from STEM Images of Single Molecules G. J. Czarnota, D. W. Andrews, N. A. Farrow, and F. P. Ottensmeyer, “” Journal of Structural Biology, vol. 113, pp. 35–46, 1994.